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Abstract. We study a system of one-dimensionalt–J models coupled to a ladder system. A
special choice of the interaction between neighbouring rungs leads to an integrable model with
supersymmetry, which is broken by the presence of rung interactions. We analyse the spectrum of
low-lying excitations and the ground-state phase diagram at zero temperature.

Systems of one-dimensional magnetic or electronic chains coupled to so-called ladders have
attracted increasing attention as a scenario in which two-dimensional physics can be studied by
starting from well established one-dimensional theories [1–3]. The properties of the undoped
systems, i.e. spin ladders, have been thoroughly investigated by a variety of methods [1–6] and
recently integrable models with tunable interaction parameters have been introduced [7–13]. To
understand the properties of the doped ladder systems the dynamics of the holes created under
doping in the background of antiferromagnetically interacting spins has to be studied [14]. This
question has been studied within a model of coupledt–J chains forming a ladder-like structure
in a series of papers [14–16] with interesting results. Within this approach, however, multi-
hole-scattering processes or the dynamics of anti-bonding hole states could not be accessed.

Our aim here is to propose a modifiedt–J ladder model, which becomes integrable at
certain limits and therefore allows us to investigate the properties of this system exactly and in
more detail. In the thermodynamic limit, we can analyse further the nature of the ground state
and predict the onset of excitations, thereby identifying the phase diagram of the system. The
system that we consider consists of two coupledt–J chains labelleda = 1, 2. The electrons
with spinσ on sitej of the chains are described in terms of canonical Fermi operatorsc

(a)
jσ . In

terms of these the chain Hamiltonian is

H
(a)
t−J =

∑
j

{
H
(a)
t−J

}
jj+1

with{
H
(a)
t−J

}
jk

= −tP
( ∑
σ=↑↓

c
(a)†
σj c

(a)
σk + h.c.

)
P + J

(
S
(a)
j · S

(a)
k − 1

4
n
(a)
j n

(a)
k

)
+ n(a)j + n(a)k (1)

whereP projects out double occupancies, theS
(a)
j are spin operators on sitej , andn(a)j =

n
(a)
j↑ + n(a)j↓ is the total number of electrons on sitej .

The Hamiltonian of the ladder model that we consider then reads

H =
∑
a

H
(a)
t−J +Hint +Hrung − µN̂. (2)
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Here,µ is the chemical potential coupling to the total number of electrons in the system,Hint

is the interaction between neighbouring rungs of the ladder, given by the expression

Hint = −
∑
j

{
H
(1)
t−J

}
jj+1

{
H
(2)
t−J

}
jj+1

andHrung contains all the interactions present on a single rung of the ladder and reads

Hrung =
∑
j

{
−t ′P

( ∑
σ=↑↓

c
(1)†
σj c

(2)
σj + h.c.

)
P + J ′

(
S
(1)
j · S

(2)
j − 1

4
n
(1)
j n

(2)
j

)
+ V n(1)j n

(2)
j

}
.

(3)

This is similar to the terms in (1) describing the interaction of electrons on the bonds within a
rung but contains independent coupling constantst ′, J ′ and an additional Coulomb interaction
of strengthV . Below we shall use a basis of states on a single rung which are eigenstates to
(3): at half-filling (one electron per site) the electrons can form a spin singlet

|s〉 ≡ 1√
2
(|↑↓〉 − |↓↑〉)

or triplet state|t+〉 ≡ |↑↑〉 etc(|στ 〉 = c(1)†σ c(2)†τ |00〉). Doping of the system creates the states

|σ±〉 ≡ 1√
2
(|σ0〉 ± |0σ 〉)

with σ = ↑ or ↓, describing a single electron with spinσ in a bonding (anti-bonding) state
or the Fock vacuum (two-hole state)|d〉 ≡ |00〉 on a rung. Below we shall be particularly
interested in the strong-coupling regimeJ ′ � 1,V � µ + |t ′| near half-filling. This implies
that the triplet states|tα〉 in the two-particle sector will be energetically unfavourable.

To study the phase diagram of the system at low temperatures we note that by excluding
the triplet states and choosing the coupling constants on the legs of the ladder asJ = 2t = 2
the Hamiltonian (2) can be rewritten as

H = −
∑
j

5jj+1 −
5∑
l=1

AlNl + constant (4)

whereNl , l = 1, 2 (3, 4), is the number of bonding (anti-bonding) single-particle rung states
with spin↑,↓ andN5 is the number of empty rungs (on the remainingN0 = L−∑

l Nl rungs
the two electrons form a singlet). The (graded) permutation operator5jk interchanges the
states on rungsj andk giving a minus sign if both rungs are fermionic, i.e. singly occupied.
In the restricted Hilbert space that we are considering here we can absorbJ ′ into the definition
of V which allows us to express the potentialsAl in terms of the coupling constants in (3) as

A1 = A2 ≡ µ+ = t ′ − µ + V

A3 = A4 ≡ µ− = −t ′ − µ + V
A5 ≡ Ṽ = −2µ + V.

(5)

The relative strength of these potentials will determine the ground state and the spectrum of
low-lying excitations in the ladder.

Note that the Hamiltonian (4) is that of a gl(2|4)-invariant superspin chain in the presence
of external symmetry-breaking fields, and the grading of the states|s〉 and|d〉 is bosonic while
the two doublets|σ±〉 carry fermionic grading. This model is integrable by means of the Bethe
ansatz(BA) (see e.g. [17–20]). In the strong-coupling regime near half-filling, where the
ground state shows little deviation from the dimerized state⊗j |s〉j , doping will lead to the
condensation of either the fermionic single-hole states|σ±〉 or the bosonic double-hole state|d〉
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into the ground state—depending on the relative strength of the chemical potentialsµ−,µ+ and
the rung interactioñV . For simplicity we shall consider the case whereµ+ = µ− ≡ µ̃ below,
i.e. two degenerate single-particle bands. Due to the grading, different sets of BA equations
have to be considered to describe these processes (see e.g. [17,21,22]): since the Betheansatz
states are highest in weight in the gl(2|4) algebra we have to deal separately with two regions
in the low-temperature phase diagram of thet–J ladder (2) between half- and quarter-filling,
corresponding to 4N5 <

∑4
l=1Nl and 4N5 >

∑4
l=1Nl , respectively.

For the first case we have to order the rung basis as|s〉, |σ±〉, |d〉, and the eigenstates of (4)
are parametrized by solutions of the BA equations corresponding to this grading (BFFFFB):[
e1(λ

(1)
j )

]L
=

M2∏
k=1

e1(λ
(1)
j − λ

(2)
k )

Mr∏
k 6=j

e2(λ
(r)
j − λ

(r)
k ) =

Mr−1∏
l=1

e1(λ
(r)
j − λ

(r−1)
l )

Mr+1∏
m=1

e1(λ
(r)
j − λ(r+1)

m ) r = 2, . . . ,4

M4∏
k=1

e1(λ
(5)
j − λ

(4)
k ) = 1

(6)

with en(x) ≡ (x + in/2)/(x− in/2). Here the number of roots on therth level is related to the
numbersNl in (4) byMr+1 = Mr −Nr (we defineM0 ≡ L). The energy of the corresponding
state is

E({λ(r)j }) = −2M1 +
M1∑
j=1

1

(λ
(1)
j )

2 + 1/4
−

5∑
l=1

AlNl. (7)

In the thermodynamic limitL → ∞ with Mr/L fixed, the solutions of (6) are built on two
types of so-called string, namely complexes

λ
(r−n)
k = ξ (r) +

i

2
(n− 2k) k = 0, . . . , n,0 6 n < r,and 26 r 6 4

corresponding to bound states of holes with different spin and parity with densitiesρ(r)(ξ) and

λ
(r)
k = 3(r)

m +
i

2
(m + 1− 2k) k = 1, . . . , m,2 6 r 6 4

corresponding to bound spin states with densitiesσ (r)m (3), r = 2, 3, 4. On level 1 and 5 all
solutions are real with densitiesσ (r)1 (λ(r)), r = 1, 5.

By minimizing the free energy of the system (see e.g. [18,20]) one finds that at most the
bound states of single-particle rung states|σ±〉 with densityρ(4) and empty rungs|d〉 with
densityσ (5)1 are present in the ground state. The densities are determined through the Bethe
ansatzintegral equations

ρ(4)(x) = a4(x)−
∫

s
dy K(x − y)ρ(4)(y)−

∫
d

dy a1(x − y)σ
(5)
1 (y)

σ
(5)
1 (x) =

∫
s
dy a1(x − y)ρ(4)(y)

(8)

whereK(x) = ∑3
n=1 a2n(x) andan(x) = 2n/(π(4x2 + n2)). The corresponding dispersions

εs andεd are given by similar integral equations:

εs(x) = 2πa4(x)− 4(2 + µ̃)−
∫

s
dy K(x − y)εs(y) +

∫
d

dy a1(x − y)εd(y)

εd(x) = µ̃− Ṽ −
∫

s
dy a1(x − y)εs(y).

(9)
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The chemical potential and the rung interaction determine the ranges of integration:∫
α

dy =
{∫ −Qα

−∞
+

∫ ∞

Qα

}
dy

through the conditionεα(±Qα) = 0. In terms of the solution of (8) the density of holes is

nh = 2
∫

s
dy ρ(4)(y)−

∫
d

dy σ (5)1 (y). (10)

For Ṽ < µ̃ < −2 bothεs andεd are positive and hence the dimer state is the ground
state of the system. For larger chemical potential, single-hole states|σ±〉 with dispersionεs

begin to condense into this ground state. The electronic properties in this phase are those of
the degenerate supersymmetrict–J model [18]. For

Ṽ > µ̃−
∫

s
dy a1(y)εs(y)

the system enters a phase where in addition double-hole rung states|d〉 with energyεd will be
present in the ground state.

For µ̃ < Ṽ we have to order the rung states as|s〉, |d〉, |σ±〉 leading to a different set of
Betheansatzequations corresponding to BBFFFF grading(M6 ≡ 0):[
e1(λ

(1)
j )

]L
=

M1∏
k 6=j

e2(λ
(1)
j − λ

(1)
k )

M2∏
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(2)
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(1)
j )
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l=1

e1(λ
(2)
j − λ

(1)
l ) =

M3∏
m=1

e1(λ
(2)
j − λ(3)m )

Mr∏
k 6=j

e2(λ
(r)
j − λ

(r)
k ) =
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l=1

e1(λ
(r)
j − λ

(r−1)
l )

Mr+1∏
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e1(λ
(r)
j − λ(r+1)

m ) r = 3, . . . ,5.

(11)

(Note that due to the reordering of the basis the number of double-hole rung states is nowN1.)
The energy of the corresponding Betheansatzeigenstates is again given by (7) withA1 = Ṽ

andAl = µ̃ for 2 6 l 6 5.
Like for (6) the solutions of these equations can be classified in strings with densities

σ (r)m for positive integersm andr = 1, 3, 4, 5 and single-hole bound states with densitiesρ(r),
r = 3, 4, 5. Only real roots with densityσ (2)1 are possible on the second level of (11). The
ground-state configuration is completely determined by

ρ(5)(x) = −
∫

s
dy K(x − y)ρ(5)(y) +

∫
d

dy a4(x − y)σ
(1)
1 (y)

σ
(1)
1 (x) = a1(x) +

∫
s
dy a4(x − y)ρ(5)(y)−

∫
d

dy a2(x − y)σ
(1)
1 (y).

(12)

The dispersions of these excitations are determined through the integral equations

εs(x) = 4(Ṽ − µ̃)−
∫

s
dy K(x − y)εs(y) +

∫
d

dy a4(x − y)εd(y)

εd(x) = 2πa1(x)− (2 + Ṽ ) +
∫

s
dy a4(x − y)εs(y)−

∫
d

dy a2(x − y)εd(y)

(13)

and the density of holes is

nh =
∫

d
dy σ (1)1 (y) − 2

∫
s
dy ρ(5)(y).

With these equations the phase diagram of thet–J ladder (4) can be completed: for
µ̃ < Ṽ < −2 the system is in the dimer phase; on increasing the rung interactionṼ the system
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enters a phase where the ground state is a Fermi sea of double-hole states with dispersionεd

moving in the background of dimer states|s〉. On increasing̃µ in this phase beyond18(7Ṽ −2),
both double- and single-hole rung states appear in the ground-state configuration.

Numerical integration of the integral equations for the densities and dressed energies
allows us to determine the phase boundaries as a function of the hole densitynh and the rung
interactionV = 2µ̃− Ṽ in equation (3). In figure 1 the resulting phase diagram is shown. For
V & 2, condensation of the single-hole states|σ±〉 is energetically favourable. For sufficiently
strongattractiverung interaction, however, doping of the system first introduces double-hole
rung states|d〉. Interestingly, we find that for 2> V > 2− 1

2(ψ(
7
8)−ψ( 7

8)) ≈ 1.676 (ψ(x) is
the digamma function), increasing the hole concentration can drive the system from the latter
phase into the one without double-hole rung states.

0.0 0.5
nh

−4.0

−2.0

0.0

2.0

4.0

V

di
m

er

|d>

|σ>

Figure 1. The phase diagram of thet–J ladder with rung interaction (3) fort ′ = 0 andJ ′ � 1
as a function of the hole concentrationnh: for large repulsiveV the ground state is a Fermi sea
of single-hole states|σ±〉 propagating in the background of rung dimers. For sufficiently strong
attractive rung interaction, the double-hole rung states|d〉 are energetically favourable. In the
intermediate region (shaded), dimersandboth types of hole rung state coexist in the ground-state
configuration.

In summary we have studied the phase diagram of a system of coupledt–J models in
the framework of an integrable system. By choosing properly the interaction between the
neighbouring rungs, the resulting ladder model can be brought into the form of a gl(2|4)-
invariant exchange model in the presence of symmetry-breaking fields, which enter the
Hamiltonian as kinetic and interaction terms on a single rung. The spectrum of excitations
and the zero-temperature phase diagram have been determined by means of the Betheansatz.
Extensions are possible by assigning different energies to the single-particle rung states of
different parity(t ′ 6= 0) and including the triplet rung states (J ′ finite). As has been shown for
the undoped case, new phases can be expected for finiteJ ′ [10].
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