lopscience = [lopscienceioporg

Home Search Collections Journals About Contactus My IOPscience

The phase diagram of an exactly solvable t-J ladder model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys.: Condens. Matter 11 L557
(http://iopscience.iop.org/0953-8984/11/50/101)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.218
The article was downloaded on 15/05/2010 at 19:08

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/11/50
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Mattéf (1999) L557-L562. Printed in the UK PIl: S0953-8984(99)08727-5

LETTER TO THE EDITOR

The phase diagram of an exactly solvablé-J ladder model
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Abstract. We study a system of one-dimensiomal/l models coupled to a ladder system. A
special choice of the interaction between neighbouring rungs leads to an integrable model with
supersymmetry, which is broken by the presence of rung interactions. We analyse the spectrum of
low-lying excitations and the ground-state phase diagram at zero temperature.

Systems of one-dimensional magnetic or electronic chains coupled to so-called ladders have
attracted increasing attention as a scenario in which two-dimensional physics can be studied by
starting from well established one-dimensional theories [1-3]. The properties of the undoped
systems, i.e. spin ladders, have been thoroughly investigated by a variety of methods [1-6] and
recently integrable models with tunable interaction parameters have beenintroduced [7-13]. To
understand the properties of the doped ladder systems the dynamics of the holes created under
doping inthe background of antiferromagnetically interacting spins has to be studied [14]. This
question has been studied within a model of couptefdchains forming a ladder-like structure
in a series of papers [14-16] with interesting results. Within this approach, however, multi-
hole-scattering processes or the dynamics of anti-bonding hole states could not be accessed.
Our aim here is to propose a modified/ ladder model, which becomes integrable at
certain limits and therefore allows us to investigate the properties of this system exactly and in
more detail. In the thermodynamic limit, we can analyse further the nature of the ground state
and predict the onset of excitations, thereby identifying the phase diagram of the system. The
system that we consider consists of two coupled chains labelled = 1, 2. The electrons
with spino on sitej of the chains are described in terms of canonical Fermi oper@fé&rﬁn
terms of these the chain Hamiltonian is
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whereP projects out double occupancies, tﬁﬁf) are spin operators on sitg andn ;" =

n'?) +n' is the total number of electrons on site
The Hamiltonian of the ladder model that we consider then reads

H = Z Ht(f)j + Hint + Hrung - MN (2)
a
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Here,u is the chemical potential coupling to the total number of electrons in the systgm,
is the interaction between neighbouring rungs of the ladder, given by the expression

o @ @
Hine = Z[Ht_J]jj+l{Hl_J}jj+l
J

and Hyyng contains all the interactions present on a single rung of the ladder and reads
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This is similar to the terms in (1) describing the interaction of electrons on the bonds within a
rung but contains independent coupling constants and an additional Coulomb interaction

of strengthV. Below we shall use a basis of states on a single rung which are eigenstates to
(3): at half-filling (one electron per site) the electrons can form a spin singlet

1
s) = 72(|N) =N

or triplet statgt,) = [11) etc(jot) = cPTc@7]00)). Doping of the system creates the states

1
log) = ﬁ(lffO) +|00))
with o = 4 or |, describing a single electron with spinin a bonding (anti-bonding) state
or the Fock vacuum (two-hole statg)) = |00) on a rung. Below we shall be particularly
interested in the strong-coupling regimie>> 1, V > u + |¢/| near half-filling. This implies
that the triplet statel, ) in the two-particle sector will be energetically unfavourable.

To study the phase diagram of the system at low temperatures we note that by excluding
the triplet states and choosing the coupling constants on the legs of the ladder 2s= 2
the Hamiltonian (2) can be rewritten as

5
H=—> Tj— Y AN, +constant 4
j =1
whereN;, l = 1,2 (3, 4), is the number of bonding (anti-bonding) single-particle rung states
with spin4, | andNs is the number of empty rungs (on the remainvig= L — ), N; rungs

the two electrons form a singlet). The (graded) permutation opefafpinterchanges the
states on rungg andk giving a minus sign if both rungs are fermionic, i.e. singly occupied.
In the restricted Hilbert space that we are considering here we can abisotb the definition

of V which allows us to express the potentidisin terms of the coupling constants in (3) as

A=Ay =pr =t —u+V
Az=As=pu_=—t' —pu+Vv (5)
A5E‘~/=—2[L+V.

The relative strength of these potentials will determine the ground state and the spectrum of
low-lying excitations in the ladder.

Note that the Hamiltonian (4) is that of aB|4)-invariant superspin chain in the presence
of external symmetry-breaking fields, and the grading of the stsitaad|d) is bosonic while
the two doublet$o..) carry fermionic grading. This model is integrable by means of the Bethe
ansatz(BA) (see e.g. [17-20]). In the strong-coupling regime near half-filling, where the
ground state shows little deviation from the dimerized sg@i¢s);, doping will lead to the
condensation of either the fermionic single-hole statesor the bosonic double-hole statd
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into the ground state—depending on the relative strength of the chemical potentialsand
the rung interactiorV. For simplicity we shall consider the case whare= ;_ = /i below,
i.e. two degenerate single-particle bands. Due to the grading, different sets of BA equations
have to be considered to describe these processes (see e.g. [17,21,22]): since theda&the
states are highest in weight in th&2jl) algebra we have to deal separately with two regions
in the low-temperature phase diagram of thé ladder (2) between half- and quarter-filling,
corresponding to s < Y1, Ny and 4Vs > Y"1, N, respectively.

For the first case we have to order the rung basjs)akr..), |d), and the eigenstates of (4)
are parametrized by solutions of the BA equations corresponding to this grading (BFFFFB):

N a 2
100 =T]ear® =)
k=1

M, M1
[ =) = []a? =27 ™) [ =25 r=2....4 (6)
k) =1 m=1
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[[a® -2 =1
k=1

with e, (x) = (x +in/2)/(x —in/2). Here the number of roots on thth level is related to the
numbersy; in (4) by M,+1 = M, — N, (we defineMy = L). The energy of the corresponding
state is

M,_1 r+:

. Mq 1 5
E({)‘E)})Z—ZMl"‘X;m—;AINL (7)
j=1 A =

In the thermodynamic limi. — oo with M, /L fixed, the solutions of (6) are built on two
types of so-called string, namely complexes

k,((r_") =§(’)+|§(n—2k) k=0,...,n,0<n<r,and2<r <4
corresponding to bound states of holes with different spin and parity with densitigs) and

i
x,‘j>=A<’>+§(m+1—2k) k=1....m2<r<4

m

corresponding to bound spin states with densitig§A), r = 2, 3,4. On level 1 and 5 all
solutions are real with densitieé”(ﬂ”), r=15.

By minimizing the free energy of the system (see e.g. [18, 20]) one finds that at most the
bound states of single-particle rung states) with density p® and empty rungsd) with
densitycrl(s) are present in the ground state. The densities are determined through the Bethe
ansatzintegral equations

P00 = as(x) - / dy K(x = y)p® () - / dy as(x — )0t (7)
5 ° ‘ (8)
o7 (x) = /dy ar(x — y)p®(y)

S
whereK (x) = Y_3_; az,(x) anda, (x) = 2n/(x(4x? + n?)). The corresponding dispersions
€s andey are given by similar integral equations:

es(x) = 2mas(x) — 42 + 1) — /dy K(x —y)es(y) + /d dy ai(x — y)eq(y)
y s ()]
e(x)=p—V - /dy ar(x — y)es(y).

S
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The chemical potential and the rung interaction determine the ranges of integration:

—0Qu o8
[or=l) "}
through the conditior, (+=Q,) = 0. In terms of the solution of (8) the density of holes is

n, =2 / dy o (y) — / dy 01> (). (10)
s d

ForV < L < —2 bothes andeq are positive and hence the dimer state is the ground
state of the system. For larger chemical potential, single-hole statesvith dispersiones
begin to condense into this ground state. The electronic properties in this phase are those of
the degenerate supersymmetrid model [18]. For

V- [ dy a1(y)es(y)

S
the system enters a phase where in addition double-hole rung |stewdth energyeq will be
present in the ground state.
For i < V we have to order the rung states|ss |d), |o+) leading to a different set of
Betheansatzequations corresponding to BBFFFF gradids = 0):
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(Note that due to the reordering of the basis the number of double-hole rung statesVg.pow
The energy of the corresponding Betiresatzeigenstates is again given by (7) with = V
andA, = afor2<1<5.
Like for (6) the solutions of these equations can be classified in strings with densities
o) for positive integers: andr = 1, 3, 4, 5 and single-hole bound states with densiti&s,

r = 3,4,5. Only real roots with densny(z) are possible on the second level of (11). The
ground-state configuration is completely determined by

PO ) = — / dy K(x = »)p® () + /d dy aa(x — y)oy” (v)

oV (x) = ax(x) + f dy as(x — y)p® () - /d dy az(x — y)o i (7).
The dispersions of these excitatisons are determined through the integral equations
es(x) =4V — 1) — fsdy K(x — yes(y) + /d dy as(x — y)ea(y)
€a(x) = 2mar(x) — 2+ V) + /dy as(x — y)es(y) — /ddy az(x — y)ed(y)
and the density of holes is )

ny = /dy o (y) — Z/dy PO ).

With these equations the phase diagram of the ladder (4) can be completed: for
fi <V < —2the systemis in the dimer phase; on increasing the rung interad¢tioa system

12)

(13)
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enters a phase where the ground state is a Fermi sea of double-hole states with dispersion
moving in the background of dimer statgs On increasingi in this phase beyon§(7\7 -2,
both double- and single-hole rung states appear in the ground-state configuration.

Numerical integration of the integral equations for the densities and dressed energies
allows us to determine the phase boundaries as a function of the hole dgnaitgl the rung
interactionV = 21 — V in equation (3). In figure 1 the resulting phase diagram is shown. For
V = 2, condensation of the single-hole stdtes) is energetically favourable. For sufficiently
strongattractiverung interaction, however, doping of the system first introduces double-hole
rung stategd). Interestingly, we find thatfor2 vV > 2— 2(y/() —¥/(§)) ~ 1.676 @ (x) is
the digamma function), increasing the hole concentration can drive the system from the latter
phase into the one without double-hole rung states.
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Figure 1. The phase diagram of theJ ladder with rung interaction (3) faf = 0 andJ’ > 1

as a function of the hole concentratiap: for large repulsiveV the ground state is a Fermi sea
of single-hole statefr.) propagating in the background of rung dimers. For sufficiently strong
attractive rung interaction, the double-hole rung statisare energetically favourable. In the
intermediate region (shaded), dimersd both types of hole rung state coexist in the ground-state
configuration.

In summary we have studied the phase diagram of a system of caupledodels in
the framework of an integrable system. By choosing properly the interaction between the
neighbouring rungs, the resulting ladder model can be brought into the form @2j&)gl
invariant exchange model in the presence of symmetry-breaking fields, which enter the
Hamiltonian as kinetic and interaction terms on a single rung. The spectrum of excitations
and the zero-temperature phase diagram have been determined by means of ta&sthe
Extensions are possible by assigning different energies to the single-particle rung states of
different parity(z’ # 0) and including the triplet rung states’(finite). As has been shown for
the undoped case, new phases can be expected forfirité].
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